A Palladium-catalysed Stannole Synthesis: Development and Mechanism

Jochen Krause, Christian Pluta, Klaus-R. Pörschke^{*} and Richard Goddard *Max-Planck-lnstitut fur Kohlen forschung, Postfach 10 13 53, 0-4330 Mulheim a. d. Ruhr, Germany*

A palladium-catalysed stannole synthesis is described and its mechanism elucidated by the synthesis of several conceivable intermediates, which have been fully characterized (NMR, X-ray structure analyses).

(HC=C)SnR₂(trans-CH=CH)SnR₂(CH=CH₂), while an un- na(ii)cyclobutene complex **1** (structure analogous to **5a**).
 (HC=C)SnR₂(trans-CH=CH)SnR₂(CH=CH₂), while an un-

catalysed $[2 + 2 + 1]$ cycloaddition react catalysed $[2 + 2 + 1]$ cycloaddition reaction with formation of

Stannylenes SnR₂ are known to react with cyclic alkynes to the stannole $R_2Sn(C_4H_4)$ has been ruled out.³ Metal-coordi-
form stannacyclopropene and distannacyclobutene com-
nated ethyne reacts differently. The nickel form stannacyclopropene and distannacyclobutene com-
pounds.¹ However, SnR₂ [R = CH(SiMe₃)₂]² and ethyne react [(Pr¹₂PC₂H₄PPr¹₂)Ni(C₂H₂)] was found to react with
above -10 °C to form a linear cha

Fig. **1** Molecular structure of **4a.** Selected bond distances (A) and angles ("): Pd-Sn 2.481(2), Pd-P(l) 2.285(4), Pd-P(2) 2.293(4), Sn-C(17) 2.21(2), Sn-C(18) 2.21(2), P(l)-Pd-P(2) 89.0(2), P(1)-Pd-Sn 133.9(1), P(2)-Pd-Sn 137.0(1), C(17)-Sn-C(18) 98.8(5), C(18)- Sn-Pd 129.9(4), C(17)-Sn-Pd 131.2(4), plane angle: P(1), P(2), Pd/C(17), C(18), Sn $86(1)$.

ponents which at 20°C give another product.4 Since the lability of 1 excludes a reaction of the four-membered ring with further ethyne above -30° C, we have now synthesized **pallada(n)stanna(xr)cyclobutene** complexes, found them to be more stable than 1, and studied their reactions with ethyne.⁵

Reaction of the ethene palladium(0) complexes $[(R'_{2}PC_{2}H_{4}PR'_{2})Pd(C_{2}H_{4})](R' = Pr^{i} 2a, Bu^{i} 2b)$ with ethyne results in displacement of ethene, and the ethyne derivatives $[(R'_{2}PC_{2}H_{4}PR'_{2})Pd(C_{2}H_{2})]$ $(R' = Pr^{i}$ **3a**, Bu^{t} **3b**) are obtained in good yield.6 The ethene complexes **2a,b** also react with SnR_2 (diethyl ether, $0^{\circ}C$) to give red cubes of the new Pd⁰-Sn^{II} adducts (R'₂PC₂H₄PR'₂)Pd=SnR₂ (R' = Prⁱ 4a, Bu^t **4b).** Both the reactions of the complexes **3a,b** with SnR2 (diethyl ether, $-78/-30$ °C) and of the complexes $4a,b$ with ethyne (diethyl ether, $>$ -100 °C) give the orange crystalline pallada(I I)stanna(I I)cyclobutene complexes **5a** $(R' = Pr)$ and **5b** $(R' = Bu^t)$, respectively, (all yields $60-90\%$). Formally, the former reaction represents an insertion of the stannylene into a Pd–C bond and the latter a $[2 + 2]$ cycloaddition reaction (Scheme 1).

Complexes **4a** and **4bt** are thermally stable. The solution **'H,** 13C, and 31P NMR spectra at 27°C are simple and are consistent with a symmetrical structure in which both phosphorus atoms are equivalent and coordinated together with the stannylene ligand at the palladium centre $[2J_{119_{\text{SnP}}}$ 675 Hz

(4a); 642 Hz (4b)]. A single crystal structure analysis of $4a \ddagger$ (Fig. 1) reveals a short Pd-Sn bond indicative of a double bond [Pd-Sn 2.481(2) A]. It is shorter than any of the Pd-Sn distances in the homoleptic, three-coordinate Pd complex $\left[Pd\left\{\text{Sn}(N(SiMe_3)_2)_2\right\}_3\right]$ [2.533(1), 2.540(1), 2.517(1) Å].⁷ The coordination plane of the Pd atom in **4a** lies almost exactly perpendicular to that of Sn $[86(1)^\circ]$, also in agreement with the formulation of a Pd=Sn double bond.§ Furthermore, the relatively small C(17)-Sn-C(18) angle of $98.8(5)$ ° is less than that expected for either a trigonally or tetrahedrally coordinated Sn atom. It is also significantly smaller than the mean NSnN angles found in $[Pd\overline{\{Sn[N(SiMe₃)₂]₂\}$] $[107(1)°]^{7}$ and suggests additional back donation from Pd to Sn in the SnR₂ plane.

The solid complexes **5a** and **5b7** are also thermally rather stable, and they are more stable than the nickel derivative 1 (decomp. 67° C). When solutions of the complexes are kept at 27°C for several days the 31P NMR signals of **5a,b** slowly disappear and the signals of **4a,b** appear. The four-membered rings of **5a,b,** therefore, decompose by cleavage of the ethyne ligand to form the $Pd^0 = Sn^{II}$ complexes $4a,b$, in contrast to the nickel derivative 1 (see above). Crystals of **5a** (Fig. 2) are isostructural# with the nickel complex 1 but there are significant differences in the geometries of the two molecules, particularly around the transition metals. The M-C and M-P distances are appreciably longer (0.12 A) for Pd and reflect. the change in metallic radius in going from Ni to Pd. Apart from the M-C distance, the geometry of the M-CH=CH-Sn unit is very similar in both **5a** and **1,** and the Pd-Sn distance is only $0.044(2)$ Å longer than the Ni-Sn distance. The C(17)-

 \ddagger Crystal data for **4a**: $C_{28}H_{70}P_2PdSi_4Sn$, $M = 806.3$, monoclinic, space group $P2_1/n$, $a = 10.007(2)$, $b = 32.036(5)$, $c = 13.203(1)$ Å, $\beta =$ $91.98(1)^\circ$, $V = 4230.0$ Å^3 , $T = 293$ K, $D_c = 1.27$ g cm⁻³, $Z = 4$, μ (Cu-K α) = 102.76 cm⁻¹, spherical absorption correction, 9265 measured reflections $(\pm h, +k, +l)$, 8704 independent and 3602 observed reflections $[I > 2\sigma(I)]$, 325 refined parameters, $R = 0.065$, $R_w = 0.081$, final difference Fourier $\rho = 2.14 \text{ eA}^{-3}$ near the Pd atom. **5a**: $C_{30}H_{72}P_2PdSi_4Sn$, $M = 832.3$, monoclinic, space group $P2_1/n$, a $= 12.424(1)$, $\vec{b} = 22.647(2)$, $c = 15.601(1)$ Å, $\beta = 104.05(1)$ °, $V =$ 4258.3 Å^3 , $T = 293 \text{ K}$, $D_c = 1.30 \text{ g cm}^{-3}$, $Z = 4$, $\mu(\text{Mo-K}\alpha) = 12.07$ cm⁻¹, 10317 measured reflections $(\pm h, +k, +l)$, 9703 independent and 7979 observed reflections $[I > 2\sigma(I)]$, 343 refined parameters, $R = 0.035$, $R_w = 0.041$, final difference Fourier $p = 0.63$ eÅ⁻³. Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

§ Various well known MO calculations of d¹⁰ metal complexes indicate that the back-bonding orbitals lie in the coordination plane of the transition metal which also contains the **Sn** accepting orbital. Therefore, the Pd and Sn coordination planes are perpendicular to each other.

fi Spectroscopic data for **5a:** Yellow-orange crystals; m.p. 157 "C. IR (KBr) vlcm-1 1470 (C=C); MS [70 eV, 120"C, *mlz* (%)I *806* (1.5, Hz, PdCH=), 7.60 (ddd, lH, SnCH=); 2.35, 2.20 (each m, 2H, PCH and P'CH), 1.80, 1.80 (each m, 2H, PCH₂ and P'CH₂), 1.24, 1.21, 1.17, 1.15 (each m, 6H, CH3), dippe; 0.14, 0.16 (each s, 18H, diastereotopic SiMe₃), -0.25 (s, 2H, SnCH), SnR₂; ¹³C NMR (100.6) MHz, [2H8]THF) *6* 177.2 (lC, PdCH=), 158.7 (lC, SnCH=); 26.3, 25.6 (each 1C, PCH and P'CH), 21.6, 21.4 (each 1C, PCH₂ and $P'CH₂$), 21.5, 19.8, 18.6, 18.6 (each 2C, CH₃), dippe; 5.0, 4.9 (each 6C, diastereotopic SiMe₃), 2.48 (2C, SnCH), SnR₂; ³¹P NMR (162) 12.7 Hz. [M-C2H2]+); 'H NMR (400 MHz, ['HSlTHF) 6 8.37 (ddd, lH, *35* 9.4 MHz, $[^{2}H_{8}]THF$) δ 75.6 $[^{2}J_{119}S_{\text{nP}}]$ 2441 Hz], $[67.7]$ $[^{2}J_{\text{SnP}}$ 100 Hz], J_{PP}

5b: Orange microcrystals; 20 °C (slow decomp.); C₃₄H₈₀P₂PdSi₄Sn (888.4). IR (KBr) v/cm^{-1} 1475 (C=C); ¹H NMR (400 MHz, $(2H_8)$ THF, -30° C) δ 8.22 (m, 1H, PdCH=), 8.18 (m, 1H, SnCH=); 2.00, 1.90 (each m, 2H, PCH₂ and P'CH₂), 1.35, 1.34 (each d, 18H, CH₃), d^tbpe; 0.16, 0.15 (each s, 18H, SiMe₃), -0.14 (s, 2H, SnCH), SnR_2 ; ³¹P NMR (81 MHz, [²H₈]THF, -30 °C) δ 85.7 [²J_{119/117</sup>SnP} 82.6 Hz], 82.1 [2J119snp 2478 Hz], **Jpp** 4.3 Hz.

⁷ Spectroscopic *data* for **4a:** Dark-red crystals; m.p. 171 "C. MS [EI, 70 eV, 120"C, *mlz* (%)I 806 (1.5, M+), 368 (8, [(dippe)Pd]+); lH NMR (200 MHz, $[{}^{2}\text{H}_{8}]$ THF) δ 1.99 (m, 4H, PCH), 1.67 (m, 4H, PCH₂), 1.13, 1.07 (each dd, 12H, diastereotopic CH₃), dippe; 0.87 (s, 2H, SnCH), -0.01 (s, 36H, SiMe₃), SnR₂; ¹³C NMR (100.6 MHz, $[{}^{2}H_{8}]$ THF) δ 26.6 (4C, PCH), 22.7 (2C, PCH₂), 20.5, 19.4 (each 4C, diastereotopic CH₃), dippe; 40.8 (2C, SnCH), 4.6 (12C, SiMe₃), SnR_2 ; 31P NMR (81 MHz, [²H₈]THF) δ 65.3 [^{2J}_{119SnP} 675 Hz]. [dippe = **di(isopropylphosphino)ethene]** .

⁴b: Red cubes; m.p. 214°C; C32H78P2PdSi4Sn (862.4). MS [EI, 70 eV, 150 °C, m/z (%)] 862 (2, M⁺), 424 (15, [(d^tbpe)Pd^{[+}); ¹H NMR (200 MHz, $[{}^{2}H_{8}]THF$) δ 1.84 (m, 4H, PCH₂), 1.25 (d, 36H, CH₃), dtbpe; 0.92 (s, 2H, SnCH), 0.18 (s, 36H, SiMe3), **SnR2;** 31P NMR (81 MHz, $[{}^{2}H_{8}]$ THF) δ 88.5 $[{}^{2}J_{119}{}_{SnP}$ 642 Hz]. [dtbpe = di(tert-butylphosphino)ethane].

Fig. 2 Molecular structure of **5a.** Selected bond distances **(A)** and angles **(O):** Pd-Sn 2.670(1), Pd-C(l) 2.051(3), Sn-C(2) 2.150(3), $C(1)$ -C(2) 1.316(5), Pd-P(1) 2.341(1), Pd-P(2) 2.285(1), Sn-C(17) 2.233(3), Sn-C(18) 2.240(3), Sn-Pd-C(l) 67.9(1), Pd-C(1)-C(2) 119.3(3), C(l)-C(2)-Sn 98.8(2), C(2)-Sn-Pd 74.0(1), P(l)-Pd-P(2) 86.2(1), P(2)-Pd-C(1) 91.2(1), P(1)-Pd-C(l) 174.8(1), P(1)-Pd-Sn 115.0(1), P(2)-Pd-Sn 158.5(1), C(17)-Sn-C(18) 103.0(1), plane angle: $P(1), Pd, P(2)/Pd, C(1), C(2), Sn$ 7(1); $Pd, C(1), C(2), Sn/Sn, C(17)$, $C(18)$ 89(1).

Sn-C(18) angle at $103.0(1)$ ^o in **5a** is larger than in the corresponding Ni complex **1** [100.9(1)"] and both are larger than the equivalent C-Sn-C angle in **4a** [98.8(5)"].

When either **4a,b** or **5a,b** are exposed to additional ethyne at 20° C, they slowly convert into the Pd⁰ ethyne complexes **3a,b** and a stoichiometric amount of the carbon unsubstituted stannole $R_2Sn(C_4H_4)$ 6. (Scheme 2). Repeated addition of an equimolar amount of $SnR₂$ to this mixture with formation of

1256 **J. CHEM.** *SOC.,* **CHEM. COMMUN., 1993**

5a,b and subsequent reaction with ethyne leads to recovery of **3a,b** and formation of an additional mole of 6. Therefore, the synthesis of **6** from SnR2 and ethyne is catalysed by **4a,b** and **5a,b,** but at this stage the process needs to be carried out discontinuously to avoid the immediate coupling of $SnR₂$ and ethyne to the linear chain product at 20°C.

A continuous catalytic formation of **6** from SnR2 and ethyne can, however, be accomplished by using $[(Pr₃P)₂PG(C₂H₂)]$ **7**** as the catalyst. Thermally labile **7,** containing two monodentate phosphane ligands, is more active than either of the $(R'_{2}PC_{2}H_{4}PR'_{2})Pd$ catalysts with a chelating diphosphane ligand and allows the reaction to be carried out at a temperature low enough to inhibit the competing uncatalysed reaction of SnR₂ and ethyne. When catalysed by 3% 7, $\sin R_2$ and C_2H_2 (2 equiv.) react at $-30\degree C$ (12 h) to form the stannole 6 in **87%** yield (Scheme 3). The overall reaction thus represents a Pd catalysed $\begin{bmatrix} 2 + 2 + 1 \end{bmatrix}$ cycloaddition leading easily to a class of carbon unsubstituted stannoles that would otherwise only be accessible with difficulty.

Received, 8th March 1993; Corn. 3lOl362F

References

- 1 W. P. Neumann, *Chem. Rev.,* 1991,91,311.
- 2 P. J. Davidson and M. F. Lappert, J. *Chem. SOC., Chem. Commun.,* 1973, 317; P. J. Davidson, **D.** H. Harris and M. F. Lappert, J. *Chem. SOC., Dalton Trans.,* 1976, 2268; D. E. Goldberg, P. B. Hitchcock, M. F. Lappert, K. M. Thomas, A. J. Thorne, T. Fjeldberg, A. Haaland and B. E. R. Schilling, *J. Chem. SOC., Dalton Trans.,* 1986, 2387.
- 3 C. Pluta and K.-R. PGrschke, J. *Organomet. Chem.,* 1993,453 C11. 4 C. Pluta, K.-R. Porschke, I. Ortmann and C. Kriiger, *Chern. Ber.,*
- 1992, 125, 103.
- 5 J. Krause and K.-R. Porschke, *Chemiedozententagung (Dresden),* 1993, B30.
- 6 J. Krause, W. Bonrath and K.-R. Porschke, *Organometallics,* 1992, 11, 1158.
- 7 P. B. Hitchcock, M. F. Lappert and M. C. Misra, J. *Chem. SOC., Chem. Commun.,* 1985, 863.

^{|| 6:} Colourless solid; m.p. 39 °C; C₁₈H₄₂Si₄Sn (489.6). MS [EI, 70 eV, 40°C *mlz* (%)I 490 (2, M+); IR (KBr) **v/cm-13055,3045,3030,3005** $(2H, -CH=)$, 6.70 (2H, SnCH=), 0.10 (36H, SiMe₃), -0.18 (2H, SnCH); 13C NMR (100.6 MHz, [2H8]THF) 6 144.8 (2C, -CH=), 137.5 $(2C, SnCH=), 6.32 (2C, SnCH), 0.00 (12C, SiMe₃).$ (=C-H), 1558, 1487 (C=C); 'H NMR (400 MHz, [2H8]THF) 6 7.10

^{** 7:} Colourless cubes; C₂₀H₄₄P₂Pd (452.9), IR (KBr) v/cm⁻¹ 3145
(=C-H), 1650 (C=C); ¹H NMR (200 MHz, [²H₈]THF, -80 °C) δ 6.21
(2H C H), 2.15 (2H DCH), 1.19 (26H CH); ^{31D} NMP (21 MHz $(2H, C₂H₂), 2.15 (3H, PCH), 1.18 (36H, CH₃);$ ³¹P NMR (81 MHz, $[2H_8]$ THF, -80° C) δ 51.2.